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Figure 1: Our method allows for the computation of exact neural SDFs of CSG operations. Here, we train one network to learn
the swept volume of a stellated dodecahedron shape, parametric over the control points of the cubic Bézier path it is swept
along. Specific swept volumes within this parameter space are then unioned together and with cylinders, resulting in a neural
implicit which thanks to our regularization term forms an exact SDF of the word “SDF.”

ABSTRACT
Signed Distance Fields (SDFs) parameterized by neural networks
have recently gained popularity as a fundamental geometric rep-
resentation. However, editing the shape encoded by a neural SDF
remains an open challenge. A tempting approach is to leverage
common geometric operators (e.g., boolean operations), but such
edits often lead to incorrect non-SDF outputs (which we call Pseudo-
SDFs), preventing them from being used for downstream tasks. In
this paper, we characterize the space of Pseudo-SDFs, which are
eikonal yet not true distance functions, and derive the closest point
loss, a novel regularizer that encourages the output to be an exact
SDF.We demonstrate the applicability of our regularization to many
operations in which traditional methods cause a Pseudo-SDF to

This work is licensed under a Creative Commons Attribution International
4.0 License.

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0315-7/23/12.
https://doi.org/10.1145/3610548.3618170

arise, such as CSG and swept volumes, and produce a true (neural)
SDF for the result of these operations.
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1 INTRODUCTION
Neural implicit functions have gained attention as a fundamental
representation of 3D objects due to their state-of-the-art perfor-
mance in tasks like compression and reconstruction, as well as their
generative power. They describe the boundary of a solid shape as
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the zero level set of a function—for example, the Signed Distance
Function (SDF) of a given surface—�� parameterized by a large set
of network weights � .

Direct manipulation of the network weights � does not nec-
essarily correspond to an intuitive change in the encoded shape.
Therefore, Constructive Solid Geometry (CSG) is an especially at-
tractive alternative for modelling with neural implicits. CSG defines
geometric forms as boolean operations (unions, intersections and
subtractions) on primitive shapes represented as implicit functions,
such as SDFs. This naturally extends to editing neural implicits, by
simply replacing the analytical SDFs with neural SDFs.

Unfortunately, boolean operations of SDFs are difficult to per-
form correctly. Common rephrasing in terms of basic comparative
operations (e.g., the union of two shapes as the minimum of their
SDFs) creates functions which only posses the correct zero level
set. Away from the surface values are no longer necessarily true
distances (see Figure 2). This makes the result ill-suited for down-
stream tasks, leading to potential decreases in efficiency (e.g., in
sphere tracing, see Figure 4) and accuracy (e.g., in collision avoid-
ance [Li et al. 2020], surface reconstruction [Sellán et al. 2023]
or medial axis extraction [Rebain et al. 2021]). Performing even
simple distance-based tasks, like surface offsetting, on the results
of boolean operations performed in this way can be catastrophic
(Figure 3).

In this work, we propose characterizing true SDFs in terms of a
closest point property on an eikonal implicit function. We add this
property as a simple regularizer for neural implicits that enforces
true signed distance results for boolean operations, including for
infinite CSG operations such as swept volumes. We show that
this addition allows one to efficiently carry out downstream tasks
that rely on a shape being represented by a true SDF, like sphere
tracing and morphological operations. Further, we showcase the
advantages of our neural approach by generalizing over a set of
parametric objects and swept volume trajectories (see Figure 1).

2 RELATEDWORK
Our work concerns neural implicit representations, which encode
3D objects through the iso-contour of a function. Several works
have explored different types of implicit function [Chibane et al.
2020; Mescheder et al. 2019; Venkatesh et al. 2021] and their ap-
plications in, e.g., real-time rendering [Takikawa et al. 2021]. We
refer the reader to [Xie et al. 2021] for a full survey of this field
and instead focus our discussion on editing operations for neural

exact SDFPseudo-SDFCSG object

0

+di st .

-di st .

Figure 2: An implicit field built from CSG operations on
SDFs (left) is often not a true distance function, but rather
a “Pseudo-SDF” (middle). It satisfies the eikonal property
almost everywhere, but is not a true SDF (right).

exact SDFPseudo-SDF erosion erosion

✗
Figure 3: Sweeping through a canvas with a moving object
is commonly used in modeling or digital drawing (left). One
can perceive such a swept volume as the continuous union of
the object as it moves along the path. Thus, as for CSG objects,
swept volume also often leads to non-SDFs, on which basic
geometric operations (e.g., erosion) give incorrect results
(middle). A correct erosion on a true SDF is shown on the
right.

Signed Distance Functions (SDFs) [Park et al. 2019]—specifically,
Constructive Solid Geometry (CSG) operations [Ricci 1973]. We
focus on performing CSG operations on neural SDFs, in contrast to
other works that focus on using neural networks to generate CSG
objects [Kania et al. 2020; Ren et al. 2021; Sharma et al. 2018; Yu
et al. 2023, 2022] .

2.1 Neural Fields Editing
The increased recent attention on neural implicit representations
has motivated the exploration of geometric editing operators de-
fined on them. Perhaps the most direct way to edit a shape en-
coded by a neural implicit is by directly modifying network pa-
rameters [Park et al. 2019] or weights [Berzins et al. 2023; Davies
et al. 2021]. However, direct weight editing often leads to unde-
sired global changes to the output [Liu et al. 2022]. In response, a
class of methods explore how to indirectly adjust network parame-
ters. Their core idea, inspired by the level set method [Osher and
Sethian 1988], is to formulate a target editing operation as a loss
function, oftentimes a PDE. Minimizing the loss then serves as an
indirect way of adjusting network weights to achieve the target
edit, such as smoothing/sharpening [Mehta et al. 2022; Yang et al.
2021], physically-based deformation [Chen et al. 2022; Cuomo et al.
2022], and sculpting [Tzathas et al. 2023]. However, PDE-based
approaches are quite slow as they require training the network at
each time step to minimize the PDE objective. An alternative is to
fix the network parameters and deform it with a vector field param-
eterized by another neural network (e.g., [Niemeyer et al. 2019]) to
avoid re-training. Once trained, the neural vector field can directly
deform any given neural implicits. By controlling the properties
of the vector field, one can also achieve different editing behaviors
[Zhang et al. 2022]. For a subclass of neural implicit architectures
that “exposes” part of the neural features to a spatial domain, such
as vertices of an octree [Takikawa et al. 2021], one can edit neural
implicits by directly moving special neural features to a different
location [Abou-Chakra et al. 2022; Gao et al. 2020] and compositing
with different features [Liu et al. 2020].

Unfortunately, most editing operators mentioned above do not
preserve the structural properties of the underlying implicit field,
such as the distance property of neural SDFs. This results in the
deformed neural “SDF” not being a distance function, preventing
subsequent geometry processing operations (see Figure 3). One so-
lution is to incorporate additional regularization to further control
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Figure 4: Using sphere tracing to render a Pseudo-SDF (mid-
dle) constructed by subtracting two SDFs (left) requires more
iterations than rendering an exact SDF (right) due to incor-
rect exterior distance values.

the editing operator. Many mesh-based regularizers have been pro-
posed to encourage surface smoothness [Hertz et al. 2020; Kato et al.
2018; Liu et al. 2019; Wang et al. 2018] or isometry [Rakotosaona
and Ovsjanikov 2020], but they are designed specifically for the
surface of an object, instead of the entire implicit field. The most
relevant work is the Eikonal regularization by Gropp et al. [2020]
which encourages the gradient of the implicit field to have unit
norm. This is an essential property all (signed) distance fields satisfy.
However, in section 4, we show that the eikonal property alone is
insufficient because many gradient-norm-one implicit functions
are not SDFs. Our proposed regularization complements existing
regularizations by encouraging the implicit field to be a true signed
distance function. Our method is based on the closest point property
of SDFs (see section 4), which also has proven useful in previous
works [Gomes and Faugeras 2003; Ma et al. 2020]. In section 6, we
demonstrate how our method can be combined with many neural
editing operators to deform the implicit function while preserving
the (signed) distance properties.

2.2 Constructive Solid Geometry
Constructive Solid Geometry is a modeling tool that describes a
shape via boolean operations of other simpler shapes called primi-
tives. As a general framework, CSG trees have been a part of Com-
puter Aided Design since its infancy [Laidlaw et al. 1986; Requicha
and Voelcker 1977], with more recent works proposing strategies
to infer them from a given finalized shape using classic techniques
[Du et al. 2018] or machine learning [Sharma et al. 2018].

Our work focuses on the atomic boolean operations that make
up a CSG tree, whose efficient and robust computation has received
much attention by the Computer Graphics research community.
This proves a particularly difficult task for the case of explicit polyg-
onal meshes [Bieri and Nef 1988; Fabri and Pion 2009].

In contrast, computing implicit booleans is simple: for example,
the union of two shapes is encoded by the minimum of the two
implicits representing them. Wyvill et al. [1999] [Barthe et al. 2004;
Schmidt et al. 2007; Wyvill and Van Overveld 1997] exploit this fact
to build full implicit modeling systems that combine booleans with
other operations like blending, smoothing and deforming.

SDFs present many advantages over general implicit functions;
among them is the possibility to render SDF surfaces efficiently
via sphere tracing [Hart 1996]. This forms the basis for popular
interactive modeling tools like Shadertoy [Quilez and Jeremias 2017]
or Adobe Substance 3D modeler. While these typically employ SDF
primitive shapes, the quality of the final representation degrades

Implicit Functions

Conservative SDFs

Pseudo-SDFs Exact SDF

Taxonomy 
of Implicit 
functions

Figure 5: For a given boundary there is a uniquely defined
exact SDF that is eikonal and satisfies the distance property,
but there are many ways in which the conditions can be
violated to different degrees. Pseudo-SDFs are functions that
satisfy the eikonal property almost everywhere, but not the
distance property (Equation 1). Conservative SDFs are not
eikonal nor do they satisfy the distance property, but the
function values are bounded by the actual distances. Implicit
functions are generic level set functions that do not have any
guarantees.

with each subsequent boolean operation (see, e.g., [Takikawa et al.
2022]). In some cases, this low quality may translate only into a
less efficient rendering (Figure 4); in other applications, it could be
catastrophic (see Figure 3).

A particular case of CSG operations are swept volumes, which
may be phrased as an continuous union of shapes along a trajectory.
Given the challenge of directly computing swept volumes of ex-
plicit meshes [Abrams and Allen 2000; Zhang et al. 2009], implicit
functions like SDFs are used even in cases where both input and
output are meshes [Schmidt and Wyvill 2005; Sellán et al. 2021].
Since these works rely heavily on the implicit boolean definition in
terms of comparative functions, they will not produce a true SDF
output. In this work, we present what we believe to be the first fully
implicit swept volume algorithm that outputs a true SDF.

3 PSEUDO-SDFS
We consider the signed distance function �� : R� → R parame-
terized by a neural network with weights � . A neural SDF �� has
the same properties as a regular SDF. A surface Σ bounding a solid
region may be implicitly encoded by the zero level set of an SDF:
the set of all points � such that �� (�) = 0. The function outputs a
positive distance from a query point � to its closest point on the
surface Σ if the point � is outside of the shape, and the negative
distance for interior points:

�� (�) =
{

� (�, Σ) if � is outside of Σ,
−� (�, Σ) otherwise,

(1)

� (�, Σ) = Inf�∈Σ‖� − � ‖,

where � (�, Σ) denotes the (positive) distance from � to Σ. This
implies that a true SDF must satisfy the eikonal property

‖∇�� (�)‖ = 1, (2)
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Figure 6: The dilation or erosion of an exact SDF (middle)
may produce a Pseudo-SDF. Eroding a convex corner (left)
or dilating a concave corner (right) results in a function that
does not obey the distance property. In the blow-ups, a cir-
cle is shown centered at � with radius � (�), where � is the
eroded/dilated SDF. The circle does not intersect the zero
level set, as it should in an exact SDF.

which states that the norm of the gradient is unit everywhere. How-
ever, the eikonal property is merely a necessary, but not sufficient,
condition to guarantee that the underlying implicit function is a
true SDF. As a result, solely encouraging an implicit function to be
eikonal (e.g., [Gropp et al. 2020]) is insufficient to obtain a true SDF.
We will first focus on discussing the family of SDF-like functions
that are not SDFs, summarized in Figure 5, and then present our
solution in section 4.

3.1 A Categorization of Implicit Functions
Exact SDF. When a function obeys the distance property in Equa-

tion 1, the function exactly encodes the distance and is thus a signed
distance field. The unambiguity of this definition means that there
is always exactly one function that satisfies this definition for any
surface Σ, which we refer to as the exact SDF for emphasis. An exact
SDF is preferable to general implicit functions in many applications,
as the additional structure imposed by the distance property allows
for more efficient and correct behavior in many applications, such
as in Figure 3 and 4.

Conservative SDF. However, obtaining an exact SDF in practice
is often difficult due to, for instance, discretization error. Thus one
often enforces the conservative distance property; namely,

|�� (x) | ≤ |� (�, Σ) |, Σ = � −1
�

(0). (3)

Intuitively, this constraints the output distance of �� to have a
smaller magnitude than the true distance � . A function that obeys
this property is called a conservative SDF (see Figure 5). Because the
conservative distance property is enforced, certain algorithms used
on exact SDFs remain applicable, albeit with looser guarantees: for
example, ray marching will still converge to a correct result as the
steps are guaranteed to not overshoot the boundary.

Pseudo-SDF. A Pseudo-SDF is a piecewise differentiable implicit
function that satisfies the eikonal property wherever the gradient
is well defined, but does not satisfy the distance property. If a
Pseudo-SDF is continuous, it must be conservative since the eikonal
property bounds the maximum rate at which the function values
can change. The fact that any Pseudo-SDF will satisfy the eikonal
property implies that the widely-used eikonal regularization [Gropp

Figure 7: CSG operations, like the union between these two
shapes (left) performed naïvely withmin andmax operations
produce Pseudo-SDFs (middle), differing from the expected
exact SDF of the unioned shape (right).

dilationerosion original

✗ ✗

Exact SDF

Pseudo-SDF

Figure 8: Dilation and erosion operations, commonly used
for smoothing or extracting bounding shapes, can fail on
Pseudo-SDFs. Compared to the true SDF of this union be-
tween two shapes (top), the Pseudo-SDF produced by the min
union is not a true SDF in the interior, and therefore produces
incorrect level sets when eroded (marked with red Xs). For
large erosions, even the topology of the surface in the eroded
Pseudo-SDF is incorrect.

et al. 2020] will not necessarily convert a function into an exact
SDF, motivating the development of our method.

These SDF-like functions, especially Pseudo-SDFs, arise natu-
rally when performing geometric editing on exact SDFs. Even ba-
sic distance-based offsetting will result in Pseudo-SDFs in regions
with non-zero curvature (see Figure 6). A more representative class
is CSG operations, where Pseudo-SDFs are ubiquitous. CSG op-
erations, including union ∪, intersection ∩, and difference −, on
implicit functions �1, �2 are often rephrased with max and min
operations

�1 ∪ �2 = min(�1, �2)
�1 ∩ �2 = max(�1, �2) (4)
�1 − �2 = �1 ∩ −�2 = max(�1,−�2),

but performing CSG operations with these formulae does not pro-
duce an exact SDF (see Figure 7). This phenomenon also generalizes
to swept volumes, which can be perceived as performing an infinite
amount of CSG operations (see Figure 17).

In the context of neural “SDFs,” the function obtained from a
network may also be far from an exact SDF. This often happens
in applications, such as in shape reconstruction and interpolation,
where the ground truth supervision is not presented (see Figure 9).
A popular (insufficient) remedy is to add the eikonal regularization
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no regularization

CP loss & eikonal loss
Figure 9: A parametric neural implicit �� (�,�) is trained to
fit a moon for �� (�, 0) and a star for �� (�, 1). For 0 < � < 1,
the vanilla neural net produces non-SDFs results (top). Our
method is able to encourage the interpolation to be exact
SDFs (bottom).

[Gropp et al. 2020] to encourage ‖∇�� (�)‖ = 1. However, as we
discussed above, the eikonal property is insufficient to guarantee
the output being an exact SDF. Instead, one often obtains a Pseudo-
SDF as a outcome, which still causes difficulties in downstream
tasks.

Our method, based on sufficient conditions for the exact SDF, is
designed to remedy generic (neural) non-SDF functions and Pseudo-
SDFs that are ubiquitous in geometric editing so that one can obtain
an exact SDF and easily perform downstream tasks.

4 CLOSEST POINT ENERGY
In this section we introduce the closest point loss to quantify how
far an implicit function is from a true SDF. Our method serves
as a regularization during neural network training to encourage
a neural implicit to be an exact SDF. Unlike the commonly used
eikonal loss, our closest point loss is able to detect the difference
between Pseudo-SDFs and exact SDFs.

Given a query point � , the closest point �̃ on the surface Σ is
defined as

�̃ � argmin
�∈Σ

‖� − � ‖, (5)

If Σ is represented by an exact SDF �� one can, by definition, obtain
the closest point �̃ ∈ Σ for a given query � by multiplying the
negated gradient −∇�� at � with the value of �� and adding the
vector to � (see inset):

�̃ = � − �� (�)∇� �� (�). (6)

We call this the closest point function. Intuitively,
−∇�� is the unit vector (due to the eikonal prop-
erty) pointing towards the direction of maximal
decrease in distance. �� gives the distance to
the the surface, indicating how far we need to
travel along −∇�� . We define our closest point
energy for a set of points � ∈ X as

�CP =
1
|X|

∑
�∈X

�� (� − �� (�)∇� �� (�))2 . (7)

This energy measures how far from the zero level set a point is
mapped by the closest point function by computing the norm of the
SDF at the mapped point. In Figure 10, we visualize the computa-
tion of the energy and show how our ��� identifies the difference
between Pseudo-SDFs and exact SDFs.

Figure 10: The closest point loss detects the regions where a
Pseudo-SDF is not a distance function. Schematically, the loss
is computed for a set of points (left) by applying the closest
point formula Equation 6 (middle), yielding a loss based on
the value of the mapped points in �� (right), shown here with
higher opacity denoting higher values of the closest point
loss.

4.1 Regularizations for Exact SDFs
Our closest point energy in Equation 7 is the missing piece needed
to encourage a neural implicit function to be an exact Distance
Function (DF), either an SDF or unsigned distance function. In prac-
tice, it is always necessary for the problem formulation to include
some specification of the sign of different regions, to break the
symmetry inherent from the fact that the orientation of a surface
is not determined by its zero level set alone. In our problems, the
editing energies break this symmetry, giving us exact signed dis-
tance fields. If an eikonal function �� has zero level set Σ and at
every point � ∈ R� the point �̃ computed from Equation 6 is in
Σ, then �� is an exact DF. This can be proven by contradiction: if
� is not an DF, then at some � it does not measure the distance
to its closest point on Σ; in other words, �̃ is not the closest point
to � on Σ. If that is the case, then there exists some other point
� ∈ Σ such that |� (�) | = ‖� − �̃ ‖ > ‖� − �‖. But by eikonality,
|� (�) − � (�) | < ‖� −�‖, meaning that |� (�) − � (�) | < |� (�) | and
thus necessarily |� (�) | > 0, which is impossible since � ∈ Σ.

The above observation proves that the eikonal property (Equa-
tion 2) and the closest point property (Equation 6) combined are
sufficient to characterize exact SDFs. This forms the foundation of
our proposed regularization for neural implicits. When training a
neural network �� to find the optimal parameters � , we propose
augmenting the original loss function L with the closest point loss
�CP and with the eikonal regularization �eik [Gropp et al. 2020] as:

�★ = argmin
�

L(� ) + ���CP (�,X) + ���eik (�,X). (8)

Our regularizations are sufficient conditions to
encourage fitting an exact SDF. In the inset, we
visualize a neural swept volume with �CP but
without �eik (see Figure 19 for its setup). This
ablation demonstrates the importance of having
both regularization terms: without �eik, training can get stuck in
local minima like this one, where all the values are essentially
zero. In section 5, we will discuss in detail how we augment our
regularizations for each neural field editing operation.
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eikonal only CP only eikonal only CP only
E = 5.2e-15 E = 0.012 E = 3.7e-15 E = 0.38

Figure 11: Given two Pseudo-SDFs computed from union
and subtraction, the eikonal energy �eik returns zero loss up
to machine precision, providing zero gradient to repair the
Pseudo-SDFs. In contrast, the closest point loss �CP returns
non-zero loss in regions that do not satisfy the distance prop-
erty (shown in red, with higher opacity corresponding to
higher loss values).

5 LOSS FUNCTIONS FOR NEURAL SDF
EDITING

To encourage CSG style editing operations to output exact neural
SDFs, we train a network �� using a combination of editing loss
functions, which capture the specific editing operations and are
described in subsection 5.1 for CSG operations and subsection 5.2
for swept volumes, and the regularization terms described in Equa-
tion 8.

5.1 Constructive Solid Geometry
For this operation, we aim to learn a network representing the
SDF of a sequence of CSG operations CSG(�) = ((�0 ⊕0 �1) ⊕1
�2 . . . ) (�) where each ⊕� is a CSG operation (union, intersection,
and subtraction) and �� are the input SDFs. The �� can be represented
in any queryable form—such as a primitive SDF defined through
math operations, an SDF on a voxel grid, or even a neural SDF.
For the given sequence of CSG operations, we can compute the
Pseudo-SDF of the result usingmin andmax functions as described
in Equation 4. We denote the output of this series of min and max
operations CSG≈. Because this sequence of operations results in a
Pseudo-SDF, the conservative distance property holds. That is,

|CSG({�� }, {⊕� }) | ≥ |CSG≈|. (9)

We therefore want to constrain our network �� to obey the inequal-
ity

|�� (�) | ≥ |CSG≈(�) | ∀ � ∈ R� . (10)

This condition can be equivalently written using the Heaviside step
function as

� (−sgn(CSG≈(�)) (�� (�) − CSG≈(�))) = 0 ∀ � ∈ R� . (11)

While this function correctly formulates CSG operations with a loss
function, it is not practical as the step function has no meaningful
gradients. To overcome this, we relax the step function to a narrow
sigmoid parameterized by a width parameter � , leading to the final
loss function which, computed at a set of points X, is

�CSG (�� ,X;�) = 1
|X|

∑
�∈X

� (−� sgn(CSG≈(�)) (�� (�) − CSG≈(�))

where � denotes the sigmoid function. This loss �CSG ensures the
correct zero level set is learned. When combined with our regu-
larization losses �CP, �eik (see Equation 8), this will encourage the
CSG result be an exact SDF.

5.2 Swept Volumes
The swept volume problem involves computing the region of space
covered by an object as it moves along a path. We consider a gen-
eral formulation of this problem: the geometry of a shape moving
in time is input as an SDF spacetime function � (�, �); to solve the
swept volume problem we seek to compute the infinite union of the
SDFs � (�, �� ) for all �� ∈ [0, 1]. This problem is harder than the CSG
problem as there is no feasible way to explicitly construct an ap-
proximate SDF representing the swept volume for the general case,
so an overall loss derived simply from bounding the approximate
SDF as obtained in the previous subsection is not feasible. Instead,
we rely on the following observation: if there exists a spacetime
point (�, �) satisfying � (�, �) < 0, then the value at � in the exact
swept volume, SV(�), must satisfy

SV(�) ≤ � (�, �) . (12)

This bound allows us to write a loss analogous to �CSG for the
swept volume operation:

�SV,− (�� ,X;�) = 1
|X|

∑
�∈X

[� (�, �) ≤ 0]� (� (�� (�) − � (�, �))) ,

(13)

where the term � (�, �) ≤ 0 is a scalar mask. This loss encodes
the structure we know about the interior of the SDF of the swept
volume. However, this loss alone cannot solve the swept volume
problem as one can construct many different exact SDFs that satisfy
�SV,− (�� ,X;�) = 0 for all points. Thus, we add additional loss term
which captures the idea that every point not required to be negative
by �SV,− should be positive:

�SV,+(�� ,X;�) = 1
|X|

∑
�∈X

� (−� �� (�)) . (14)

The final editing loss for swept volumes is constructed from the
sum of these two losses (see subsection 6.2).

5.3 Implementation Details
We represent our implicit function with a multi-layer perceptron
with ReLU non-linearities. For all tests, we use 7 hidden layers with
a hidden size of 128, initialized with the method by He et al. [2015].
The network is trained using Adam [Kingma and Ba 2015], with
step size 10−4. At each epoch of training, the loss functions are
evaluated on a set of points, which are generated during training.
To reduce the time spent generating sample points, we reuse the
same point set for � ≈ 20 epochs.

importance 
sampling

stratified 
sampling 

5.3.1 Sampling. As our loss is de-
fined uniformly across a set of sam-
ple points X (see Equation 7), the
way we sample points X during
training creates a bias towards differ-
ent regions. Because the zero level
set of ��—the surface represented by
the SDF—has much more visual importance than the rest of the
function, we choose to sample points in a way that weighs the
values of losses near the zero level set more. The inset shows the
importance of this in achieving a visually sharp zero level set: in
the union computed with no importance sampling, Spot’s horns—a
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ours min/max ours min/max
Figure 12: Computing CSG operations—union (top left), dif-
ferences (top right, bottom left), and intersection (bottom
right)—with the min/max operators leads to Pseudo-SDFs
(third columns). Adding our regularization encourages the
neural SDF to be an exact SDF (second columns).

sharp feature—do not show up in the zero level set. To implement
this sampling strategy, we generate two point sets,X = Ximp+Xamb.
The points � ∈ Ximp are importance sampled based on their near-
ness to the zero level sets of the shape SDFs defining the operation.
We implement this with rejection sampling: points � are sampled
using stratified sampling in the entire domain (R� for CSG and
R�+1 for swept volume) and accepted when they satisfy the criteria

rand(0, 1) ≥ � (� (�), �), (15)

where� (�, �) is a Gaussian with mean � and standard deviation � ,
and rand(0, 1) is a random number from the uniform distribution
between 0 and 1. This procedure produces points near the zero level
sets of the original functions, a super set of the zero level set of the
edited shape.

The second set of points, Xamb is simply constructed through
stratified sampling on the entire domain. It is necessary to ensure
the function is an SDF everywhere in the trained region. This
sampling procedure has two parameters, the � of the Gaussian
used for importance sampling and the fraction of points sampled
by importance sampling.

5.3.2 Parametric Neural SDFs. A particular advantage of neural
SDFs is their ability to represent families of shapes in their latent
space. This is especially applicable to our application, as it allows
for the computation of entire families of CSG operations and swept
volumes by training a single network—such as a network paramet-
ric over the path of the swept volume or over parameters of shapes
involved in CSG operations. Such a network requires a single up-
front training cost, after which specific instances of the problem
can be solved through a simple network evaluation. To implement
this, we increase the dimension of the network: in � dimensional
space, a network representing an SDF with� parameters will be a
function �� : R�+� → R. With this change, we can apply the same
loss functions as before. Note that the gradient ∇� �� term in our
losses is the spatial gradient, excluding the additional parametric
dimensions.

6 RESULTS
We evaluate how our method can be used to train neural implicits
of exact SDFs under some geometric editing operations, specifically
CSG operations and swept volumes. Our model is implemented in
PyTorch [Paszke et al. 2019] and trained on a NVIDIA GeForce RTX
3090 GPU.

6.1 Constructive Solid Geometry Operations
We use our regularizations from Equation 8 to compute CSG opera-
tions without obtaining a Pseudo-SDF, as the naïve method does.
We define the loss function as

� = �1�CSG + �2�CP + �3�eik . (16)

We use the same hyper parameters for each of the tests: the weight-
ings of the losses are chosen to be (�1, �2, �3) = (15, 1, 1) and the
sharpness of the sigmoid in �CSG is � = 300.

In Figure 12, we show how one can use our method to learn SDFs
of CSG operations on 3D objects. Unlike the Pseudo-SDFs created
by computing CSG operations with min and max, we can correctly
compute dilations and erosions of our result (see Figure 18). In
addition to computing SDFs of single CSG operations, we can apply
our method to CSG operations over parametric shapes to obtain a
parametric neural SDF (see subsubsection 5.3.2) that outputs exact
SDFs for a family of shapes. In Figure 16, we train a neural network
to represent the entire family of pin shapes. Once trained (≈ 10
hours on a single NVIDIA GeForce RTX 3090 GPU), one can easily
obtain the exact SDF of any instance within the family via a single
network evaluation.

ours 
(CP + eikonal)eikonal only

In the inset, we perform an ab-
lation study to investigate the influ-
ence of the closest point loss. Remov-
ing �CP from Equation 16 without
changing the initialization causes
the network to get stuck in a local
minimum which is eikonal but has
the incorrect zero level set (not pictured). When initialized with the
Pseudo-SDF, optimizing with �eik only remains at this minimum.
This shows the importance of incorporating both �CP and �eik as
regularizers to encourage convergence to the exact SDF.

6.2 Swept Volumes
For swept volumes problems, the loss function is

� = �1�SV,− + �2�SV,+ + �3�CP + �4�eik . (17)

As before, we use the same set of hyper-parameters for all problems
described: (�1, �2, �3, �4) = (10, 0.5, 0.1, 0.1), and for the sharpness
of the sigmoid functions we choose �1 = �2 = 300.

In Figure 19, we evaluate our method on computing a swept
volume along a single cubic path. In Figure 13, we test our swept
volume method on SDFs computed from brush profiles included
in Photoshop. Because of the complex profile, these shapes lead to
especially incorrect interior SDFs in the stamped result, while our
network learns an exact SDF of the resulting sweep. We can also
take advantage of neural implicit’s ability to learn swept volumes
over a family of paths. In Figure 14, we take a data-driven approach,
collecting a set of handwriting data from [Marti and Bunke 2002] as
our training data, represented as cubic Bézier curves. This ensures
our network spends its capacity on the distribution of handwriting,
instead of infinite arbitrary paths. Our method enables a trained
network to output an exact SDF of a “hello” hand-written by another
writer who is not included in the training data. In addition to cubic
Bézier curves, our method is applicable to swept volume of different
kinds of path, such as those including rotations (see Figure 15). We
can train networks parametric over properties of the path, allowing
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stamped (N=100) oursbrushes

Figure 13: Given a set of brush profiles included in Photo-
shop (left), our method is able to learn exact SDFs of swept
volumes (right), as opposed to the incorrect SDF resulting
from stamping (middle).
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Figure 14: We train a neural swept volume network with a
circle sweep shape on a set of handwriting paths obtained
from [Marti and Bunke 2002], visualized on the left. On the
right, we demonstrate how our method is able to produce
and generalize an exact SDF of the “hello” that is written by
a writer not included in the training data.

linear cubic
cubic 

+ rotation

Figure 15: Our method generalizes across different types of
swept paths, such as linear and cubic Bézier paths with or
without rotations. Our method learns an exact SDF in 3D
space, here visualized on a 2D slice.

us to sweep a rotating space shuttle (Figure 20) or construct families
of paths for drawing in virtual reality (Figure 21). Figure 1 brings
together CSG operations and swept volumes by directly computing
the unions of shapes sampled from a neural implicit trained to
represent sweeps parametric over cubic paths.

7 LIMITATIONS & FUTUREWORK
We propose regularizing neural implicits with the closest point
and eikonal losses to encourage the result to be an exact SDF (see
Equation 8). Combined with geometric editing losses (see section 5),

our approach is able to correctly produce exact SDFs for CSG objects
and swept volumes. Our current approach, however, requires hours
of re-training to repair a Pseudo-SDF; exploring fast fine-tuning
(e.g., low-rank updates [Hu et al. 2022]) of a pre-trained model
could boost the efficiency of the repairing process.

An exciting future direction is to evaluate our regulraization on
neural SDF applications beyond computation of CSG operations,
such as test-time reconstruction [Duggal et al. 2022] or generation
[Chen and Zhang 2019].
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Figure 16: Given a family of pin shapes controlled by (ℎ1, ℎ2, �2, ℎ3) (left), we use our method to train a parametric neural implicit
to represent the exact SDFs of all CSG operations in this family (middle). One the right, we compare the implicit function of a
particular instance within this pin family computed naïvely with min and max operations (top right) and as a neural SDF with
our regularization applied during training (bottom right).

exact10 stamps 50 stampsswept volumeept 10 stamps 50 stamps

Figure 17: A swept volume can be perceived as a union of an
infinite amount of shape “stamps” along a path.

erosions dilations

oursmin/max oursmin/max

Figure 18:With Pseudo-SDFs computed fromCSG operations
based on min/max (first, third), one does not obtain the cor-
rect erosion and dilation behavior. Our method, which does
not produce the same Pseudo-SDF artifacts, is able to obtain
correct results.

stamped (N=1000)ground truth ours

orginal stroke
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L2 ERROR 0.0092L2 ERROR 5.8×10-5

Figure 19: Computing the swept volume of a star shape along
a cubic curve (top first) via the naïve union of many stamps
leads to non-SDF function (top fourth). With our method we
compute an SDF of the sweep (top third) that is much closer
to the ground truth (top second), which is reflected quantita-
tively by the lower L2 error over the shown domain for our
result. Having a correct sweep is important for later tasks,
for instance taking the the erosion of the stroke (bottom).
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Figure 20: Our method is used to create the swept volume of a space shuttle flying along a fixed linear path. The rotation of the
space shuttle around its vertical axis through the path is learned as a one dimensional latent space, sampled here at many
points. Model courtesy of NASA.

sweep
shape

sweep
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Figure 21: We train a single network to learn the swept volume of a shape along any cubic Bézier path. We show networks for
two different sweep shapes here, evaluated on cubic Bézier curves fit to data recorded from sketching in VR. We must train this
model only once, and are then able to compute swept volumes simply through a network evaluation.
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